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Domain-Wall Fermions

Observables on the Lattice
...That Are Exceedingly Difficult

Disconnected diagrams
(strangeness of the proton,
dark matter couplings)

Zero-flavor physics
(η′, a0 properties)

Precision physics
(nuclear binding energies,
NPLQCD use 100s of sources)
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Domain-Wall Fermions

A Chiral Fermion

Domain-Wall Fermions

Low-lying eigenstates:
chiral modes bound to
the edges of 5th

dimension

Very helpful for weak
matrix elements (BK ),
NPR, operator mixing
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Domain-Wall Fermions

Domain-Wall Operator
Spectrum
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Inversion Algorithms

Krylov Subspace Solvers

Krylov solvers spend 50–90% of a lattice calculation’s computer power

Includes the very common conjugate-gradients (CG) algorithm

Constructs the Krylov subspace Kn = {r ,Ar ,A2r , . . . ,Anr}
Number of iterations scales like the square-root of the matrix’s
condition-number:

√
κ

For the Dirac operator, κ ∝ 1/m = “critical slowing”

Very efficient at eliminating modes with large eigenvalues
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Inversion Algorithms

Algorithm Study

Due to the indefinite spectrum of the DWF operator, none of the standard
Krylov solvers is guaranteed to work.

Most solvers, including
BiCGStab, fail to converge.

TFQMR and QMR work, but
very slowly.

CGNR is by far the fastest.
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Inversion Algorithms

Normal-Equation Solvers

If we accept that we must use the normal equation, most Krylov solvers
work.

CG remains fastest.

However, it cannot be
preconditioned in a flexible
way.
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Multigrid

Sketch of Multigrid Algorithm
V-Cycling

D x � b
x1 � S Ν1 I D ¾D , D ¾b M

x2 � S Ν2 I P ¾ D ¾D P , b2 M

x � x1 + P x2 + S Ν3 I D ¾D , D ¾b3 M

b2 � P ¾I D ¾b - D ¾D x1 M b3 � b - D H P x2 + x1 L
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Multigrid

Sketch of Multigrid Algorithm
Constructing the Coarse Space
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Multigrid

Sketch of Multigrid Algorithm
Visualizing the Subspaces
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Multigrid

Sketch of Multigrid Algorithm
Visualizing the Subspaces
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

The method by which V is constructed does not matter much. Using a
solver that will be reused later is convenient, but not necessary.
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

Since D†D is normal, its left and right eigenvectors are the same. P and R
can be constructed from the same set of near-null vectors.
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

The outer solver must be flexibly preconditioned. The selection of the
smoother has some effect, but the coarse-level solver can be anything.
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V using the previously described
algorithm for which ψ†D†Dψ ≈ 0 for all ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

How is this “adaptive”? We can select new near-null vectors from those
that are poorly converged by our current algorithm. Repeat as necessary.
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Multigrid

Applied ASAM on DWF Normal Equation
202 × 8, U(1), quenched

This algorithm seems to work well on the 2d U(1) DWF normal equation,
removing the slowing at small masses.

202 × 8 U(1) lattice

42 × 8 blocks
Nv = 16

Outer solver: CG
Smoother: GMRes(6)
Coarse solver: CG
Coarse r2: 10−3
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Multigrid

Applied ASAM on DWF Normal Equation
202 × 8, U(1), quenched

This algorithm seems to work well on the 2d U(1) DWF normal equation,
removing the slowing at small masses.

202 × 8 U(1) lattice

42 × 8 blocks
Nv = 16

Outer solver: CG
Smoother: GMRes(6)
Coarse solver: CG
Coarse r2: 10−3
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Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle
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Multigrid
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Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle

0 1000 2000 3000 4000 5000 6000
10-17

10-14

10-11

10-8

10-5

coarse iter

 r
c
¤2
�
 b

c
¤2

6f 163
´32 Lattice HMGL

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 13 / 17



Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle
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Multigrid

Applied ASAM on Clover-Wilson Fermions
Graphics courtesy of J. Osborn

Multigrid works even better on clover fermions.
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Multigrid

Applied ASAM on Clover-Wilson Fermions
Graphics courtesy of J. Osborn

If the 2-level multigrid starts to slow at very low mass, add more levels.
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Multigrid

Improved Error for Fixed Residual
Graphics courtesy of J. Osborn

Since multigrid works efficiently on relevant eigenmodes,
the quality of the solution is better than standard solvers.
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Summary

Summary

Conclusions

Multigrid greatly speeds calculation of propagators
For clover fermions at the physical mass: 20× faster
Works for DWF normal equation; improved by factor of 4–8
Multigrid works even better on larger lattices

Recent advances

Integrated as a user-friendly module in Chroma
Scaling tests for DWF on large lattices (running on Kraken)

Future Work

Port to GPUs
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Is This Algorithm Good Enough?

Advantages

Blocks away the entire 5th dimension.

Factor of 4–8 decrease in fine-operator applications.

Removes the critical slowing at small quark masses.

Should have excellent scaling with the lattice volume.

Disadvantages

Not a nearest-neighbor operator; poor parallelization.

Are there more vectors in P (and R) than we need?
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Constructing a 1-Hop Coarse Operator

Can we use (P†D†P)(P†DP) as a coarse operator?

No, the DWF operator is not normal:
left-vectors are not right-vectors (conjugated).

Can we use (P†Γ5DP)2 as a coarse operator?

Γ5 = γ5R, where R reverses the 5th dimension

Sounds promising, but empirical tests show no convergence

We know (P†D†1)(1DP) works; how do we get closer to that?
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Constructing a 1-Hop Coarse Operator

Try (P†D†R†)(RDP) where dimR > dimP.
In the limit where dimR → dimD, this is the known-good algorithm.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv (R) = 48
Nv (P) = 12–48

mq = 0.01

Requires fast implementation of
rectangular-matrix linear algebra
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